

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit

Ministry of Health231, de Saram Place, Colombo 01000, Sri LankaTele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lkEpidemiologist: +94 11 2681548, E mail: chepid@sltnet.lkWeb: http://www.epid.gov.lk

Vol. 51 No. 49

30th Nov- 06th Dec 2024

Immunobridging Trials to Evaluate Vaccines

This is the first article of two in a series on "Immunobridging Trials to Evaluate Vacines"

Infectious diseases continue to cause significant illness and death worldwide, despite the availability of advanced medical tools like vaccines, treatments, and antibodies. One challenge is that infectious pathogens constantly mutate to escape human immunity, making these tools less effective over time. To keep up with evolving pathogens, faster ways to assess and approve new medical solutions are essential. These pathways help protect people from infections and improve their quality of life.

Immunobridging is a strategy that speeds up access to effective tools for tackling evolving pathogens. It uses surrogate immune response measures, like antibody levels, to predict how well a new vaccine or drug will work. 'Surrogate immunological measures' are indirect markers or indicators used to predict the effectiveness of a vaccine, drug etc., based on immune responses, rather than relying on clinical outcomes (e.g. prevention of disease or *death*). These measures serve as substitutes for direct evidence of clinical benefit. Examples in practice include COVID-19 HPV & Influenza vaccines. Although immunobridging has been used for years, such as with influenza vaccines, many healthcare providers are still unfamiliar with it. Greater awareness of this approach is especially important now, as the risk of epidemics and pandemics

Normally, vaccines must pass rigorous phase 3 trials with placebo controls before they can be approved. However, this can be challenging when there are too few cases of disease or volunteers for traditional trials. In addition, when new variants emerge, evidence from older phase 3 trials may no longer be relevant. In such situations, phase 3b immunobridging trials provide a faster, safer, and more efficient way to evaluate updated vaccines or treatments.

What is Immunobridging?

Immunobridging is a trial methodology that infers the effectiveness of a new drug or vaccine through a surrogate immunological measure of efficacy. It compares the immune response from the new treatment to results from earlier studies of similar treatments.

Immunobridging trials are appropriate for interventions that rely on pathogen-mediated humoral immunity (antibody-based immunity) or passive prophylaxis with antibodies, as these outcomes can be evaluated using laboratory assays.

In vaccine trials, Immunobridging is an alternative to traditional vaccine effectiveness trials. It compares the immune response of a new vaccine to that of an already approved vaccine, showing that both produce similar immune responses.

Page

1

 \mathcal{B}

4

Contents

- 1. Immunobridging Trials to Evaluate Vaccines- I
- 2. Summary of selected notifiable diseases reported (23rd 29th Nov 2024)
- 3. Surveillance of vaccine preventable diseases & AFP (23rd 29th Nov 2024)

RI LANKA 202

WER Sri Lanka - Vol. 51 No . 49

Purpose of Immunobridging

Immunobridging helps avoid the need for large-scale vaccine effectiveness trials when expanding a vaccine's use to new groups or conditions. When immune responses match those linked to vaccine-induced immunity, immunogenicity data can be used to predict effectiveness. The WHO describes **Immunobridging** as a regulatory and scientific approach to infer vaccine effectiveness through comparison of immune response markers elicited by a vaccine under different sets of conditions. In simple terms, it evaluates immune response markers from a vaccine in varying situations to estimate its efficacy.

It is used to assess vaccine effectiveness in new scenarios after it has been proven effective in clinical trials under different conditions. These scenarios include:

- Use in different age or demographic groups.
- Different dose levels or schedules.
- Modified vaccine formulations, such as adding or changing antigens.
- Simultaneous administration with other vaccines (to check for immune interference).
- Use of a different vaccine platform (in specific cases).

Immunobridging provides a scientifically justified way to avoid repeating clinical endpoint efficacy studies when enough evidence supports the new application.

Schematic of Immunobridging

In immunobridging, study subjects are divided into two groups:

1. Reference Group:

- Includes participants from earlier clinical trials where the vaccine or treatment was proven effective.
- The formulation, dose, and schedule used in these trials are recorded.

2. Test Group:

- Includes new participants volunteering for trials.
- The formulation, dose, and schedule for this group are finalized based on statistical hypotheses.

The test group is designed to match the reference group as closely as possible, with only a few controlled differences. The hypothesis leads to the selection of immune markers.

Compiled by:

Dr Dhivya A Nathaniel Registrar in MD Community Medicine Epidemiology Unit

References:

- Cruz, P., Lam, J.M.; Abdalla, J.; Bell, S.; Bytyci, J.; Brosh-Nissimov, T.; Gill, J.; Haidar, G.; Hoerger, M.; Maor, Y.; et al. (2025). Immunobridging Trials: An Important Tool to Protect Vulnerable and Immunocompromised Patients Against Evolving Pathogens. *Vaccines*, 13, 19. https://doi.org/10.3390/ vaccines13010019
- https://cdn.who.int/media/docs/default-source/blueprint/doranfink 4 immunobridging vrconsultation 6.12.2021.pdf
- Khoury, D.; Schlub, T.; Cromer, D.; Steain, M.; Fong, Y.; Gilbert, P.; Subbarao, K.; Triccas, J.; Kent, S.; Davenport, M. (2023). Correlates of Protection, Thresholds of Protection, and Immunobridging among Persons with SARS-CoV-2 Infection. Emerg. Infect. Dis. J., 29, 381.
- Gilbert, P.B.; Donis, R.O.; Koup, R.A.; Youyi, F.; Plotkin, S.A.; Follman, D. (2022). A COVID-19 Milestone Attained—A Correlate of Protection for Vaccines. N. Engl. J. Med., 387, 2203–2206

Figure 2: Schematic of Immunobridging

P	age	3
Ξ.	- 5 -	<u> </u>

Source: Weekly Returns of Communicable Diseases (esurvilance.epid.gov.lk). T=Timeliness refers to returns received on or before 29th Nov, 2024 Total number of reporting units 358 Number of reporting units data provided for the current week: 358 C**-COmpleteness + a = Cases reported during the current week. B = Cumulative cases for the year.

WER Sri Lanka - Vol. 51 No. 49

/RCD	0	-	1	7	-	-	-	7	1	-	~	-	1	-	1	7	7	-	7	7	1	1	3	-	1	7	1	10
3	*⊢	100	80	87	100	100	85	100	100	100	6	100	100	100	100	6	86	100	67	6	96	100	8	91	90	82	100	3 6
rculosis	в	2031	1105	556	554	122	254	428	147	162	238	27	57	40	33	149	107	114	456	216	273	110	232	125	366	339	136	8311
Tuber	A	52	14	4	0	З	0	10	5	-	0	0	-	0	0	S	-	0	-	0	9	0	с	ი	,	4	S	145
nania-	ш	2	28	2	64	364	~	5	480	116	~	0	n	12	16	4	26	19	619	36	854	492	45	246	173	31	0	3641
Leishn	A	0	0	0	5	4	0	0	5	2	0	0	~	0	2	0	2	~	10	0	7	7	~	ო	ი	~	0	68
ngitis	в	49	139	61	15	24	19	100	32	77	33	9	14	26	9	51	39	23	273	85	68	32	41	100	140	85	31	1569
Meni	A	ი	7	0	0	0	~	2	0	~	0	0	0	0	~	0	0	0	ი	4	c	0	~	0	2	5	4	46
xodu	ш	569	487	654	392	149	274	846	304	370	218	15	12	46	1	160	134	107	612	136	296	159	394	176	364	904	232	8021
Chicke	A	4	21	16	5	9	10	31	2	13	5	0	0	ę	0	5	S	2	21	7	12	4	13	4	2	23	c	227
abiies	в	0	0	~	ო	0	0	2	2	0	-	2	0	0	2	2	~	0	4	~	-	~	0	~	ო	~	0	28
H. R.	۲	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~	0	0	-
Hep.	ш	6	13	<u>-</u>	13	0	10	7	6	24	7	0	~	4	0	24	7	4	10	4	16	61	51	69	31	15	4	417
Viral	۲	0	~	0	0	0	~	0	~	0	0	0	0	0	0	0	~	0	~	0	~	2	2	2	0	~	0	13
hus F.	в	6	12	8	38	9	48	121	48	29	524	, -	13	2	7	ę	2	15	40	38	33	ę	53	35	35	33	5	1178
Тур	A	~	0	0	0	0	2	2	0	0	25	0	0	0	0	0	0	က	~	0	-	~	0	0	~	0	0	37
spirosis	в	563	924	870	262	111	170	964	514	627	30	20	31	110	74	85	223	152	978	284	431	285	475	662	2029	876	75	11825
Lepto	A	27	51	26	7	00	2	40	17	38	4	0	~	~	2	7	16	9	47	14	13	26	4	16	83	36	S	495
oning	ш	25	80	38	72	30	209	112	50	38	48	2	7	22	22	65	23	13	356	4	47	33	58	88	34	16	30	1522
F. Pois	A	0	S	0	0	0	0	ო	0	0	0	0	~	0	0	~	0	2	~	0	4	~	0	0	0	~	0	17
ever	в	49	14	38	10	ω	7	12	9	с	28	2	~	2	0	7	0	с	S	4	c	~	g	с	g	10	2	238
En. F	A	0	0	0	0	0	0	0	0	~	~	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
halitis	в	1	39	ი	7	4	œ	22	4	9	2	0	0	~	0	17	4	~	37	4	œ	с	<u>-</u>	5	12	15	~	225
Encep	A	0	0	0	0	~	~	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~	0	0	ę
entery	В	44	45	35	41	18	143	59	28	14	70	17	18	13	10	128	39	22	56	14	36	27	41	22	127	31	18	1116
Dys	۲	0	2	~	ო	0	9	က	0	~	~	0	0	0	0	က	0	~	~	~	2	0	2	~	7	0	0	35
le Fever	ш	10718	5332	2599	4304	915	337	2023	814	1121	5454	304	319	182	217	1531	259	669	2142	1152	740	398	831	968	2766	1907	702	48734
Dengu	A	185	186	34	63	31	က	26	9	20	47	~	9	e	က	21	4	0	20	23	12	17	15	20	53	23	~	832
RDHS		Colombo	Gampaha	Kalutara	Kandy	Matale	Nuwara Eliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapura	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmunai	SRILANKA

Table 1: Selected notifiable diseases reported by Medical Officers of Health 23rd-29th Nov 2024 (48th Week)

30th Nov- 06th Dec 2024

Table 2: Vaccine-Preventable Diseases & AFP

30th Nov-06th Dec2024

23rd - 29th Nov 2024 (48th Week)

Disease	No.	of Ca	ases	by P	rovir	nce		Number of cases during current	Number of cases during same	Total number of cases to date in	Total num- ber of cases to date in	Difference between the number of cases to date		
	W	С	S	Ν	Е	NW	NC	U	Sab	week in 2024	week in 2023	2024	2023	in 2024 & 2023
AFP*	00	00	00	00	00	00	00	00	00	00	02	72	89	-19.1%
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %
Mumps	01	00	01	06	00	00	01	03	00	12	07	275	212	29.7 %
Measles	00	00	00	00	00	00	00	00	01	01	13	296	757	-60.8 %
Rubella	00	00	00	00	00	00	00	00	00	00	00	02	09	-77.7%
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	02	-100 %
Tetanus	00	00	00	00	00	00	00	00	00	00	00	05	06	-16.6 %
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %
Japanese Enceph- alitis	00	00	00	00	00	00	00	00	00	00	02	11	04	175 %
Whooping Cough	01	01	01	00	00	00	02	00	00	05	00	66	07	842.8 %

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna, KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam,

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

NA = Not Available

Take prophylaxis medications for leptospirosis during the paddy cultivation and harvesting seasons.

It is provided free by the MOH office / Public Health Inspectors.

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. H. A. Tissera Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10