

WEEKLY EPIDEMIOLOGICAL REPORT

A publication of the Epidemiology Unit Ministry of Health 231, de Saram Place, Colombo 01000, Sri Lanka Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk Web: http://www.epid.gov.lk

Vol. 51 No. 20

11th – 17th May 2024

Historical Perspectives in Epidemiology: Panum's 1846 Measles study and its impact on **Modern Epidemiology - Part II**

This is the second article of two in a series on "Historical Perspectives in Epidemiology: Panum's 1846 Measles study and its impact on Modern Epidemiology"

During his investigations, Dr Panum was able to identify new facts about the spread of measles. These have been listed below with how the findings contributed to modern epidemiology.

Concepts	Panum's findings	Modern Epidemiology					
High attack rate Susceptibility	The outbreak exhibited a high attack rate with the disease spreading rapidly throughout the population. All age groups in these virgin populations could be affected, with mortality being common. Virgin populations referred to those that had not had an	This epidemic illustrated the concept of a 'susceptible population' which is a funda- mental aspect in epidemiology as the attack rate (or the proportion of susceptible indi- viduals who become infected) helps to assess the potential impact of an outbreak and the effectiveness of interventions such as vaccina- tion.					
	outbreak in decades. In such type of virgin popula- tions, nearly all will be infected.						
Modes of trans- mission	Panum observed that measles was primarily spread through respiratory droplets when infected individu- als coughed or sneezed. This emphasized the im- portance of respiratory hygiene and relevant measures in controlling the spread of the disease. Additionally, when infected individuals were isolat- ed, further transmission of the disease was prevent- ed within those communities.	To halt transmission of a disease, understand- ing how it is passed from one individual to another is important. Today, more advanced techniques such as contact tracing and molec- ular epidemiology where sequencing of viral genomes is done, are conducted to understand pathways of transmission.					
Immunity	Contracting natural infection conferred lifelong immunity as was the case among the elderly popu- lation among the Faroese who had contracted mea- sles during the outbreak in 1781.	Understanding natural immunity is important for modelling disease spread and evaluating the potential for herd immunity. This is also critical for developing vaccination strategies as it assists us towards determining the level of immunity required to prevent outbreaks.					
Incubation period & infec- tiousness	An incubation period of about 14 days was noted from infection to the onset of disease symptoms. He also noted that individuals were contagious before the display of symptoms.	This concept is important in today's context by helping us to predict the spread of the disease, when to implement quarantine measures and to advise on the duration of isolation.					
Epidemic Curve	Panum described the progression of the measles epidemic over time, noting the dramatic rise and subsequent fall in case numbers.	Plotting epidemic curves or epi curves is a standard practice to visualize the course of an outbreak. This helps epidemiologists under- stand the dynamics of transmission, and the impact of interventions and predict future trends.					
Role of Isola- tion & Quaran- tine	The importance of isolating infected individuals to prevent the spread of disease was crucial in control- ling the epidemic at the time.	Key strategies to control infectious diseases include isolation and quarantine as was seen in the COVID-19 pandemic.					
Field Epidemi- ology	The systematic collection and analysis of data from the field during this epidemic laid the groundwork for field epidemiology.	To this day, this tradition is continued by fiel epidemiologists by investigating outbreaks a the ground level, collecting data and imple menting control measures. The Epidemi Intelligence Service (EIS) by the CDC & Epidemic Intelligence from Open Source (EIOS) initiative by WHO are descendants of this approach.					

Contents	Page
1. Historical Perspectives in Epidemiology: Panum's 1846 Measles study and its impact on Modern Epidemiology II	1
2. Summary of selected notifiable diseases reported $(04^{th} - 10^{th} May 2024)$	3
3. Surveillance of vaccine preventable diseases & AFP $(04^{th} - 10^{th} May 2024)$	4

RI LANKA 2024

WER Sri Lanka - Vol. 51 No . 20

Panum's medical ethnography of the Faroe Islands accompanied by his clinical insights was considered as the 'geography of the disease' or 'geographic pathology' (early names for 'epidemiology'). Nowadays, we consider it as population research based on the 'web of causation' which is usually multivariate (consisting of social, behavioural and biological variables).

Measles being a respiratory disease was one of the diseases most easily explained by the miasmatic (bad air) interpretation. However, the defined incubation period was a powerful factor to indicate that measles could not be miasmatic but must be purely contagious in nature. The contagious nature of the disease in Faroe Islands was verified by Panum who identified the first case as a cabinetmaker from Copenhagen, from whom the disease had spread to others in the Islands. Thus, the disease had to be caused by something beyond our perception of the five senses. This finding paved the way for the work of eminent scientists such as Louis Pasteur and Joseph Lister who introduced the modern germ theory in the late 1800s.

Dr Panum's work also emphasized the importance of paying attention to detail, carrying out proper data analysis and explanation of the results, and the use of interdisciplinary thinking. His theory of contagion was confirmed by the work of the English physician John Snow as evidenced during the cholera outbreak in London in 1854. Similar to the methodology used by Panum in the measles epidemic; through careful mapping of the cholera outbreak, John Snow was able to elicit a single connection in common to the affected patients: they had all retrieved water from a specific local street pump. His theory was proved by removing the pump handle, effectively stopping the outbreak.

The observations made during the measles epidemic on the Faroe Islands have been instrumental in advancing our understanding of the epidemiology of infectious diseases. These findings laid the foundation for modern public health measures such as surveillance, quarantine, and vaccination in controlling and preventing the spread of infectious diseases thus leading the way towards modern epidemiology.

Modern epidemiology has evolved to include sophisticated statistical models, global surveillance systems, genetic sequencing methods and advanced public health interventions. However, the core concepts observed by Dr Panum remain central to the discipline of modern epidemiology, illustrating the timeless nature of his contributions.

Compiled by:

Dr Dhivya A Nathaniel Registrar, Epidemiology Unit

References:

- 1. Panum, Peter Ludwig. (1846). Observations made during the epidemic of measles on the Faroe Islands in the year 1846. <u>https://www.medicine.mcgill.ca/</u> epidemiology/hanley/vaccinations/PanumMeasles.pdf
- Melgaard, Craig A. and Golbeck, Amanda L. (2014) "Peter Ludwig Panum and the Danish School of Epidemiology," *The Bridge:* Vol. 37: No. 2, Article 7. https://scholarsarchive.byu.edu/thebridge/vol37/iss2/7
- 3. <u>https://blogs.cdc.gov/publichealthmatters/2017/03/a-legacy-of-disease-detectives/</u>

District	MOH areas	No: Expected *	No: Received
Colombo	18	108	4
Gampaha	15	90	NR
Kalutara	13	78	88
Kalutara NIHS	2	12	12
Kandy	23	138	14
Matale	13	78	10
Nuwara Eliya	13	78	30
Galle	20	120	109
Matara	17	102	27
Hambantota	12	72	26
Jaffna	14	84	149
Kilinochchi	4	24	NR
Mannar	5	30	1
Vavuniya	4	24	54
Mullatvu	6	36	17
Batticaloa	14	84	0
Ampara	7	42	8
Trincomalee	12	72	0
Kurunegala	29	174	NR
Puttalam	13	78	NR
Anuradhapura	23	138	0
Polonnaruwa	9	54	0
Badulla	16	96	2
Moneragala	11	66	1
Rathnapura	20	120	NR
Kegalle	11	66	0
Kalmunai	13	78	0

Tab	le 1	: Se	elec	ted	noti	ifiab	le d	lisea	ases	s rep	oort	ed b	y M	edi	cal (Offi	cers	of	Hea	lth	04 th	-10	th M	ay 2	2024	l (19	9 th V	Veek)
9	** C	100	66	100	100	100	100	100	100	100	93	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	66
WRCD	*–	95	86	80	100	100	100	95	100	100	86	100	100	75	100	100	100	100	86	69	91	89	69	100	95	100	100	93
ulosis	в	785	458	215	232	54	117	167	44	49	119	6	26	1	13	54	73	35	192	72	100	43	84	31	126	130	54	3293
Tuberculosis	A	37	31	0	~	9	ω	10	9	4	16	-	ю	0	0	~	7	5	0	0	4	4	9	0	4	ω	4	161
Leishmania-	В	0	6	0	19	104	0	Э	206	38	0	0	~	9	5	~	9	8	238	13	356	192	12	98	75	15	0	1405
Leish	٨	0	~	0	~	~	0	0	20	0	0	0	0	0	0	0	0	0	23	2	33	5	0	9	0	~	0	93
Meningitis	ш	13	46	27	-	9	4	34	14	41	7	4	S	7	0	23	22	7	124	28	21	17	13	49	58	30	8	617
Menir	A	~	e	~	2	0	~	2	0	ო	0	0	0	0	0	~	~	0	0	~	~	2	0	0	5	4	~	38
Chickenpox	В	198	135	281	226	55	103	281	132	160	126	5	4	17	2	52	56	28	205	67	66	72	138	53	136	351	102	3084
Chick	٩	13	17	13	8	5	12	21	9	17	10	0	0	2	0	S	~	~	0	8	9	2	9	2	5	28	15	210
Rabiies	ш	0	0	0	0	0	0	~	0	0	~	0	0	0	0	0	0	0	2	0	0	0	0	0	2	~	0	7
Ŧ	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Viral Hep.	ш	5	-	9	4	4	с С	9	с С	2	e	0	~	4	0	8	4	0	2	~	2	2	10	13	13	5	~	108
	A	8	3	5 0	12 0	1	25 0	49 1	18 1	0 6	7 0	7 0	6 0	2	10 0	1	1	10 0	16 0	5 0	24 1	1	13 0	17 1	12 1	0 6	1	2 5
Typhus F.	ш	0	0	0						0	357	0	0	0		0	0			0						0		5 622
	A	0	0	0	0	0	0	2	0	4	2	5 0	0	0	0	0	7 0	7 0	0	0	0	0	0	0	7	0	0	
eptospirosis	Ξ	1 175	1 256	6 283	6 106	3 46	2 86	8 312	7 265	7 144	0 12	0	0 16	0 56	0 53	1 33	4 127	3 107	7 286	2 130	5 220	2 135	0 242	16 455	1 712	2 260	2 42	6 4574
	A	5 11	4	-				~	0	4		N	0	2	2	(0)		2		0	0	2	~		8 31	4	Q	3 176
F. Poisoning	В	3	2	1 13	19	0 17	6 143	4 33	0 33	7 0	0 22	0	0	0	0	0 16	0 12	-	1 342	0	5	0	1 21	0 68	1	7 0	0	2 793
	A		2	23	6 10	5	4	4	о Ю	5	4	5	~	~	0	4	0	2	.	0 0	~	-	0	-	с С	2	0	2 32
En. Fever	8	3 31	0	1 2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	~	0	0	0	0	0	0	7 112
	A	4	9	~	0	0	4	0	~	<i>с</i> о	2	0	0	0	0	7	2	0	17	~	2	0	4	2	с	4	0	72
Encephalitis	В	0	0	0	0	0	0	0	0	0	~	0	0	0	0	~	0	0	, N	0	0	0	0	0	0	0	0	4
	A	6	12	15	14	2	40	20	18	4	33	5	~ -	0	4	66	14	10	16	~	5	13	<u>-</u>	5	47	7	<u>-</u>	
Dysentery	Ξ	~	2	0	6	0	4		2	0	4	0	~	0	0	8	0	0	-	0	~ -	-	0	0	3	2	~	38 383
	A					355	190		505	414		268	184	129	181		147	468		641	486	203	512	406			528	
Dengue Fever	В	4626	2026	1341	1882			1098			4968					1075			1296						1169	1090		26188
Den	A	75	55	31	71	13	4	21	18	16	19	0	~	4	0	19	0	18	34	7	2	9	2	12	88	56	2	589
RDHS		Colombo	Gampaha	Kalutara	Kandy	Matale	Nuwara Eliya	Galle	Hambantota	Matara	Jaffna	Kilinochchi	Mannar	Vavuniya	Mullaitivu	Batticaloa	Ampara	Trincomalee	Kurunegala	Puttalam	Anuradhapura	Polonnaruwa	Badulla	Monaragala	Ratnapura	Kegalle	Kalmunai	SRILANKA

11th-17th May 2024

WER Sri Lanka - Vol. 51 No. 20

WER Sri Lanka - Vol. 51 No. 20

Table 2: Vaccine-Preventable Diseases & AFP

11th - 17th May 2024

04th - 10th May 2024 (19th Week)

Disease	No. of Cases by Province										Number of cases during same	Total number of cases to date in	Total num- ber of cases to date in	Difference between the number of cases to date	
	W	С	S	Ν	E	NW	NC	U	Sab	week in 2024	week in 2023	2024	2023	in 2024 & 2023	
AFP*	00	00	00	00	00	00	00	00	00	00	00	31	29	6.9 %	
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Mumps	01	01	01	00	01	00	01	00	03	08	04	110	83	32.5 %	
Measles	00	00	01	01	01	00	00	00	00	03	00	205	00	0 %	
Rubella	00	00	00	00	01	00	00	00	00	01	00	02	01	100 %	
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Tetanus	00	00	00	00	00	00	00	00	00	00	00	02	01	100 %	
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %	
Japanese Enceph- alitis	00	00	00	00	00	00	00	00	00	00	00	01	02	-50 %	
Whooping Cough	00	00	00	00	00	00	00	00	00	00	00	06	03	100 %	

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

NA = Not Available

Take prophylaxis medications for leptospirosis during the paddy cultivation and harvesting seasons.

It is provided free by the MOH office / Public Health Inspectors.

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. Samitha Ginige Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10