

WEEKLY EPIDEMIOLOGICAL REPORT A publication of the Epidemiology Unit

Ministry of Health231, de Saram Place, Colombo 01000, Sri LankaTele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lkEpidemiologist: +94 11 2681548, E mail: chepid@sltnet.lkWeb: http://www.epid.gov.lk

Vol. 51 No. 35

"Brucellosis"

24th – 30th Aug 2024

RI LANKA 202

Brucellosis - Part I

This is the first article of two in a series on ceives inadequate attention.

Brucellosis is a bacterial infection caused by various Brucella species, mainly affecting cattle, pigs, goats, sheep, and dogs. Human infection typically occurs through direct contact with infected animals, consumption of contaminated animal products, or inhalation of airborne pathogens. Most human cases are associated with the consumption of unpasteurized milk or cheese from infected animals.

Brucellae are Gram-negative coccobacilli that are non-spore-forming, non-motile, and aerobic, though some strains may require additional CO2 for growth. Three species-B. melitensis, B. abortus, and B. suis-are significant pathogens in humans, while B. canis is less common. These species are distinguished by their production of urease and hydrogen sulfide, sensitivity to dyes, cell wall antigens, and phage susceptibility. The major species are further classified into multiple biovars.

Global Burden of Brucellosis

The World Health Organization ranks brucellosis among the leading neglected zoonotic diseases globally. Despite its significant impact in many developing nations, the disease frequently

Brucellosis has been endemic worldwide since David Bruce discovered Brucella melitensis on the island of Malta in 1887. Although human cases have been reported in at least 170 countries, brucellosis remains both the most widespread and one of the most overlooked diseases. The causes of brucellosis outbreaks differ across regions. In Africa, the high demand for animal products and insufficient prevention programs increase the risk. In Asia, close contact with small livestock and the consumption of unpasteurized dairy products contribute to the heightened risk. In the Americas, the risk is more dispersed, with Central America facing the greatest threat, followed by the northern and southern regions of South America, largely due to the farming of cattle, small livestock, pigs, and the trade of unpasteurized milk products.

The epidemiology of human brucellosis has shifted significantly in recent decades, with its geographic spread continuing to grow. Centre for Disease Control and Prevention(CDC) of the United States has estimated the global incidence of human brucellosis to be 1.6-2.1 million new cases per year, which is three to four times higher than the previous estimate of 500,000 new cases per year.

Photo credit- https://www.researchgate.net/figure/The-Global-Incidence-of-Human-Brucellosis fig1 5687521 re-

Contents Page 1 1. Brucellosis - Part I 2. Summary of selected notifiable diseases reported (17th - 23rd Aug 2024) 3 3. Surveillance of vaccine preventable diseases & AFP (17th - 29rd Aug 2024) 4

WER Sri Lanka - Vol. 51 No. 35

The disease is both emerging and re-emerging, often being imported from endemic regions through travel, immigration, and international trade. Brucellosis remains widespread in parts of Asia and Africa, particularly in West and Central Asia, as well as North and East Africa, with the highest incidence reported in countries like Syria, Kyrgyzstan, Mongolia, Iran, Algeria, and Kenya. In regions where the disease had previously been controlled, such as Bosnia and Herzegovina, Azerbaijan, and the USA, re-emergence of cases is frequently observed.

In South Asia, human brucellosis is endemic, particularly in Afghanistan, Nepal, and India. While the disease is widespread in Afghanistan, a significant decline in cases was noted from 2007 (11.13 per 100,000) to 2019 (0.06 per 100,000). Brucellosis was introduced to Sri Lanka during World War II through cattle imports.

Transmission of Brucellosis

Photo credit- https://www.flickr.com/photos/ilri/53013617827 Brucellosis is a zoonotic disease caused by Brucella sp. bacteria. Created and uploaded by a.slater@cgiar.org

Animal transmission

Brucellosis is primarily transmitted to susceptible animals through direct contact with infected animals or contaminated environments, particularly during events such as abortion or birth, when high concentrations of bacteria are present in the birth fluids. The bacteria can survive outside the animal in the environment for several months, especially in cool, moist conditions, remaining infectious to other animals that ingest them. In addition to colonizing the udder and contaminating the milk, the bacteria can also spread to animals through cuts in the skin or mucous membranes. Brucellosis poses a significant concern in wildlife, affecting species such as feral pigs, bison, elk, and European hares, which complicates eradication efforts. Furthermore, the bacteria have been detected in marine mammals, highlighting the disease's broad impact across different species.

Human Transmission

Brucellosis poses significant public health risks, particularly in endemic regions, where it persists due to factors like the expansion of animal industries, urbanization, and inadequate hygiene in animal farming and food handling. It is considered

24th - 30th Aug 2024

an occupational hazard, especially for those working in the livestock sector, such as farmers, butchers, hunters, veterinarians, and laboratory personnel, who are at higher risk due to direct exposure to infected animal blood, placenta, fetuses, or uterine secretions.

Human transmission of brucellosis typically occurs through direct contact with infected animals, consumption of contaminated animal products, or inhalation of airborne agents. Most human cases are linked to the consumption of unpasteurized milk or cheese from infected animals.

Transmission from human to human is rare.

Compiled by:

Dr. Helanka Wijayatilake Senior Registrar Epidemiology Unit

References:

- 1. https://www.who.int/news-room/fact-sheets/detail/brucellosis
- https://emedicine.medscape.com/article/213430-treatment? form=fpf
- Yagupsky P, Morata P, Colmenero JD. Laboratory Diagnosis of Human Brucellosis. Clinical Microbiology Reviews. 2019 Dec;33(1):e00073–19.
- 4. Medical Microbiology. 4th edition. Chapter 28 Brucella, G.G. Alton and J.R.L. Forsyth.
- Centres for Disease Control and Prevention. Estimates human Brucella infections could be four times higher than previously thought. Food Safety; 2023.
- Pappas G, Papadimitriou P, Akritidis N, et al.. The new global map of human brucellosis. Lancet Infect Dis. 2006 Feb;6(2):91– 99. doi: 10.1016/S1473-3099(06)70382-6
- Long ignored but making a comeback: a worldwide epidemiological evolution of human brucellosis, Zhiguo Liu, a,* Liping Gao,b,* Miao Wang,c Min Yuan, a and Zhenjun Lia,d, Emerging Microbes Infection. 2024; 13(1): 2290839.
- Madalagama R. Identification of biovars of Brucella abortus in aborted cattle and buffaloes herd in Sri Lanka. Veterinary World. 2011;4(12):542–545.
- Rossetti CA, Maurizio E, Rossi UA.. Comparative review of Brucellosis in small domestic ruminants. Front Vet Sci. 2022;9:887671. doi: 10.3389/fvets.2022.887671
- Lashley FR. Emerging infectious diseases at the beginning of the 21st century. Online J Issues Nurs. 2006 Jan 31;11(1):2. doi: 10.3912/OJIN.Vol11No01Man01

Гab	le 1	: Se	elec	ted	noti	ifiab	le d	lisea	ises	s rep	porte	ed k	y M	edi	cal (Offic	cers	of	Hea	lth	17 th	-23	d A	ug 2	2024	(34	4 th	Vee	;k
e	*0	100	66	100	100	100	100	100	100	100	93	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	66	
WRO	*–	100	93	87	100	100	100	85	92	100	100	100	100	100	100	79	100	100	100	100	91	100	81	100	100	91	100	96	
losis	в	1479	831	420	452	88	185	302	115	111	187	18	41	26	23	109	94	79	364	146	206	80	163	84	232	255	98	6122	
Tubercu	A	43	26	7	17	ε	ε	7	22	7	7	0	0	0	0	7	-	0	ო	0	9	0	7	7	12	6	с	177	
ania-	в	~	16	~	33	214	~	ę	359	88	~	0	~	œ	6	4	20	15	443	27	630	0	381	30	179	132	21	2617	
Leishm	A	~	0	0	2	14	0	0	2J	0	0	0	0	0	0	-	~	0	7	0	20	0	26	0	5	9	~	93	
Igitis	в	29	97	45	13	10	15	65	23	62	17	£	e	18	2J	37	31	12	207	54	40	12	25	27	71	66	51	1073	
Menir	A	-	e	4	0	0	0	~	0	0	~	0	0	2	-	с	2	~	4	с	~	-	0	-	7	4	2	37	
enpox	в	366	297	440	304	115	179	541	244	261	161	7	9	33	4	06	95	62	384	105	201	172	107	271	93	242	640	5420	
Chick	۷	00	ດ	6	e	-	9	22	က	15	-	0	~	0	0	4	00	ო	1	С	9	Q	က	9	Ø	Ø	15	158	
abiies	ш	0	0	~	~	0	0	~	2	0	~	~	0	0	0	2	~	0	4	~	~	0	0	0	~	2	~	20	
H. R	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~	0	0	0	0	0	0	0	0	-	
ral Hep.	8	8	8	8	10	5	9	7 (9	4	5	0	-	4	0	17	5	3	4	3	10	4	41	23	3 29	1 20	6	l 240	
	A	8	8	7	9	, V	` ۲	5) ç	0	0	0	-	4	-	2	-	2	о 0	4	2	2	5	0	5	, T	33	5 11	
phus F,	Θ	0	0	0	2	0	0	2	0	4	4	0	0	0	0	0	0	0	~	2	0	0	0	сэ Т	0	~	~	4 89	
ه ح	A	e	4	2	4	2	с С	0	00	~	~	0	~	ں س	с о	6	2	~	~	~	~	0	с С	2	0	0	~	1	
tospirosi	ш	3 35	6 51	9 52	1	0 7	2 14	3 54	0 35	5 34	1	-	0	1 7	2	0 5	0 15	3 13	9 47	6 18	6 32	1	2 21	6 39	3 56	5 129	1 52	5 761	
ig Lep	A	19 1	72 1	35	52	20	0	30 1	4	26	33	7	0	2	17	52	17	S	45	e	38	00	7	31	25	15 2	1	39 14	
Poisonir	В	.	~	.	0	0	1 2(0	0	0	~	0	0	0	0	0	0	0	0 3	0	0	0	~	0	0	0	0	6 12:	
ш с	A	Ģ	<i>с</i> о	0	G	7	0	0	2J	2	e	2	~	~	0	9	0	n	e	e	2	~	~	5	ო	00	0	Σ	
n. Feve	B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~	0	0	0	1 20	
tis	4	7	25	2	2	0	7	20	က	9	2	0	0	~	0	10	с С	~	29	ę	9	0	~	2	e	2	9	47	
icephali		0	N	0	0	0	~	0	0	0	0	0	0	0	0	0	0	0		0	0	0	~	0	0	0	0	5	
ery Er	B	24	33	21	32	,	107	41	25	Ø	50	,	7	12	7	96	27	13	38	7	23	16	18	26	15	81	13	762	
Dysent	A	0	~	2		0	°	2	0	0	-	~	0	0	0	0	0	0	0	2	9	-	-	0	~	2	-	25	
ever	в	8198	3745	2080	3312	559	275	1541	656	728	5193	285	238	162	192	1337	217	609	1846	883	615	643	303	681	618	2121	1605	38642	
Dengue F	A	263	124	43	72	21	7	27	,	22	16	ო	10	ო	0	21	2	ę	20	თ	7	10	10	15	25	77	36	857	
							A		σ									e			nra	Ma		σ				5	
SHO		colombo	Sampaha	(alutara	(andy	Aatale	luwara Eli	Salle	lambanto	Aatara	laffna	Kilinochch	Aannar	/avuniya	Aullaitivu	Batticaloa	Ampara	rincomale	kurunegala	uttalam	Anuradhap	olonnaruv	adulla	lonaragal	Ratnapura	ƙegalle	(almunai	SRILAN	

24th-30th Aug 2024

WER Sri Lanka - Vol. 51 No. 35

Table 2: Vaccine-Preventable Diseases & AFP

24th-30th Aug 2024

17th - 23rd Aug 2024 (34th Week)

Disease	No.	of Ca	ases	by P	rovii	nce				Number of cases during current	Number of cases during same week in 2023	Total number of cases to date in	Total num- ber of cases to date in	Difference between the number of cases to date
	W	С	S	Ν	E	NW	NC	U	Sab	2024		2024	2023	in 2024 & 2023
AFP*	00	00	00	00	00	00	00	01	00	01	01	48	64	-35.9 %
Diphtheria	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %
Mumps	00	01	00	00	02	01	02	00	01	07	02	190	155	22.6 %
Measles	01	00	08	01	00	02	00	00	00	10	39	282	331	-14.8 %
Rubella	00	00	00	00	00	00	00	00	00	00	00	02	03	-33.3 %
CRS**	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %
Tetanus	00	00	00	00	00	00	00	00	00	00	00	05	06	-16.6 %
Neonatal Tetanus	00	00	00	00	00	00	00	00	00	00	00	00	00	0 %
Japanese Enceph- alitis	00	00	00	00	00	00	00	00	00	00	00	06	02	200 %
Whooping Cough	00	00	00	00	00	00	01	00	01	02	01	39	06	550 %

Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam, AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS, Special Surveillance: AFP* (Acute Flaccid Paralysis), Japanese Encephalitis

CRS** =Congenital Rubella Syndrome

NA = Not Available

Number of Malaria Cases Up to End of August 2024, 05 All are Imported!!!

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

ON STATE SERVICE

Dr. H. A. Tissera Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10